top of page
Search

Part 3:  Re‑Architecting the Autonomous‑Driving Stack with Tool‑Using LLMs

  • Writer: Tetsu Yamaguchi
    Tetsu Yamaguchi
  • Jun 2
  • 1 min read

Updated: Jun 3

Autonomous vehicles (AVs) confront ultra‑diverse road scenes, harsh latency budgets and unforgiving regulators. Post‑Transformer tech is letting teams rebuild the AV brain around modular, verifiable LLMs.

AV Challenge

Technique

2025 Frameworks

Fusing camera + LiDAR + maps under uncertainty

Multimodal unification + Multi‑agent orchestration

DriveAgent spawns vision, LiDAR and causal‑reasoning agents for consensus driving plans.

Scaling to global skill sets (snow, dense urban, highways)

Scene‑ and Skill‑specialised MoE

DriveMoE achieves SOTA on Bench2Drive closed‑loop tests.

5–10 s horizon prediction without labels

Latent World Models (LAW)self‑supervise future latent features.



Edge deployment on DRIVE Thor

SSM + INT4 + 2:4 sparsity supported in DriveOS LLM SDK.

Regulatory traceability

Runtime guardrail DSLs enforce no‑go zones (e.g., solid lines, speed caps).

Draft IEC 61508 annex proposal.

Hallucination‑free routing

RAG 2.0 inside forward pass queries HD maps mid‑inference.

Baidu Apollo RAG‑inside branch (closed beta).

Key shift: From monolithic perception‑→‑planning pipelines to tool‑using LLM agents that can cite sources (maps, sensor logs), prove invariants on the fly, and squeeze onto automotive SoCs.

 
 
 

Comments


Knowgic Technology

  • LinkedIn

Waterloo, Ontario, Canada

Copyright © Knowgic Technology. All Rights Reserved.

bottom of page